11.11 Videos Guide

11.11a

Exercises:

- Find the Taylor polynomial $T_3(x)$ for the function f centered at the number a. Graph f and T_3 on the same screen.
 - $\circ f(x) = \sin x, \qquad a = \pi/6$ $\circ f(x) = e^{-x} \sin x, \qquad a = 0$

11.11b

Approximate f by a Taylor polynomial with degree n at the number a.
(b) Use Taylor's Inequality to estimate the accuracy of the approximation f(x) ≈ T_n(x) when x lies in the given interval.

(c) Check your result in part (b) by graphing $|R_n(x)|$. $f(x) = \sin x$, $a = \pi/6$, n = 4, $0 \le x \le \pi/3$

11.11c

• Use the information from the previous exercise to estimate sin 38° correct to five decimal places.

11.11d

Approximate f by a Taylor polynomial with degree n at the number a.
(b) Use Taylor's Inequality to estimate the accuracy of the approximation f(x) ≈ T_n(x) when x lies in the given interval.

(c) Check your result in part (b) by graphing $|R_n(x)|$. $f(x) = \ln (1 + 2x), \quad a = 1, \quad n = 3, \quad 0.5 \le x \le 1.5$

11.11e

• Use the Alternating Series Estimation Theorem or Taylor's Inequality to estimate the range of values of x for which the given approximation is accurate to within the stated error. Check your answer graphically.

 $\cos x \approx x - \frac{x^2}{2} + \frac{x^4}{24}$ (|error| < 0.005)